

基于深度感知的身份认证技术

2016 阿里安全峰会

Authentication

Roadmap

- Passwords
- Biometrics
 - Physiological
 - Behavioral
- Behavioral Biometrics

PASSWORD

What passwords do you and your parents use?

* * * * * * * *

A Large-Scale Empirical Analysis of Chinese Web Passwords, Usenix Security 2014

Password leakage

Sample sets: Over 100 million plaintext passwords

Share the most popular passwords

	Chinese		English	
	123456	(2.17%)	123456	(0.88%
2	123456789	(0.65%)	12345	(0.24%
3	111111	(0.59%)	123456789	(0.23%
ł	12345678	(0.39%)	Password	(0.18%
5	000000	(0.34%)	lloveyou	(0.15%

Passwords Love

	Top Chinese Pinyins	Top English Words	
	woaini (1.47%)	password (1.28%)	
) -	li (1.06%)	iloveyou (0.98%)	
5	wang (0.97%)	love (0.76%)	
ŀ	tianya (0.89%)	angel (0.59%)	
5	zhang (0.84%)	monkey (0.45%)	

What is a good authentication?

- Work !
- Non-transferable
- No impersonation
- Usability

Authentication — Categories

- What you know?
 - Passwords
- What you have?
 - Keys
 - Smart cards
 - Token
- Who you are?
 - Biometrics

- Work !
- Non transferable
- No impersonation
- Usability

BIOMETRICS

11

Biometrics

- Physiological → who you are?
 - DNA, Iris, Retina, Face, Fingerprint, Finger Geometry, Hand Geometry, vein

- Behavioral \rightarrow How you act?
 - Gait, typing, mouse use characteristics, voice/speaker,

Physiological biometrics — Hand

360biometrics.com

researchgate.net

Physiological biometrics — Vein

- Variations of Vein Recognition Technology
 - finger vein,
 - wrist vein,
 - palm vein,
 - backhand vein

Fujitsu PalmSecure Mouse

The Hitachi Finger Vein Reader

Swiss startup BIOWATC

TechSphere VP-IIX: Hand Vascular Pattern Recognit System

Physiological biometrics — Others

- Retina Geometry
- Iris Recognition
- Thermal Image
- Face Recognition
- **DNA**
- Ear Shape Recognition

biometrics.pbworks.com

hopkinsmedicine.org

Physiological bioelectrical Signals

conventional biometric modalities, the bioelectrical signals are highly confidential and personal to an individual therefore difficult to forge. Pal, A., Gautam, A. K., & Singh, Y. N. (2015). Evaluation of Bioelectric Signals Human Recognition. Procedia Computer Science, 48, 747-753

Physiological biometrics — Heartbeat

- Nymi Band -- a wearable, multi-factor authenticator
 - The band's sensor and ECG recognition algorithms monitor the shape of the wave a person's heartbeat creates.
 - Hopes you could pay with your heartbeat instead of fingerprints!

Behavioral biometrics \rightarrow How you act?

- Behavioral \rightarrow How you act?
 - Gait, typing, mouse use characteristics, voice/speaker,

Biometrics - issues?

Millions of fingerprints stolen in US government hack

© 24 September 2015 | Technology

- What does a stolen biometric mean?
- How many biometrics do you have?

Five times more fingerprints were stolen in OPM hack than first estimated

Erin Kelly, USA TODAY 11:49 a.m. EDT September 23, 2015

3D – SIGNATURE

J. Tian, C. Qu, W. Xu, and S. Wang, "KinWrite: Handwriting-Based Authentication Using Kinect," in Proceedings of the 20th Annual Network & Distributed System Security Symposium (NDSS), 2013

3D-Signature

- **3D signature**: *handwriting in 3D space*
 - Write short, easy to remember passwords in the space,
 - 2 or 3 characters
 - Behavioral biometrics:
 - ♦ Can be updated
 - ♦ Difficult to duplicate
 - ♦ A weak typed password can still be strong if it is written in 3D space

- Challenges:
 - ♦ Change over time?
 - ♦ Reject malicious users?
 - ♦ Accept genuine users?

How to capture 3D signature?

- Microsoft Kinect
 - A motion input RGB-D sensor
 - Launched by Microsoft for Xbox 360 and Windows PCs
 - Advantages
 - Low cost
 - Captures 3D information
 - Depth sensor
 - Works in the dark
 - Disadvantages
 - Low resolution
 - Measurement errors

KinWrite: Data Processing

Data Processing: Acquisition

- Subject: raise a hand and use a fingertip
- Kinect: record the writing motion in the space

Data processing: preprocessing

- Raw signatures
 - ✤ Noisy
- + Smooth
 - + Kalman filter

x-axis

22

Data Processing: Feature Extracting

Quantify the similarity of 3D-signatures

Approach--Dynamic Time Warping (DTW)

 DTW distance represents the similarities between two 3D- signature samples --Warping along the temporal axis

Euclidean Distance

Dynamic Time Warping

• Requires a small number of training samples

KinWrite: Enrollment & Verification

Template: best represent the signature

Threshold: determine whether two signatures are from the same user

- ♦ DTW distance < threshold \rightarrow pass
- ♦ DTW distance > threshold \rightarrow fail to pass

Experiments: Scenarios

Scenario 1 – Legitimate users

- Let the subjects write their genuine signatures:
 - 18 users, 35 signatures
 - **18 47** 3D-signature *samples* for each signature over a period of **5** months
 - 1180 samples in total

Educated Attack

Insider Attack

240

240

4

4

Experiments: Attack Unknown: spelling, how to sign Scenario 2 – Attackers Attack model Known: spelling, Unknown: how to sign Random attacker Content-aware attacker Observer attacker Unknown: spelling, Educated attacker Known: how to sign Insider attacker # 'attacker' **#** samples from each # 'victim' **#** samples Attack Type Random Attack 34 14~42 4 1040 Content-Aware Attack 6 10 240 4 1-Observer Attack 12 5 240 4 4-Observer Attack 12 5 4 240

5

5

12

12

Results: Attack Scenarios

Conclusions and On-going Work

- Conclusions
 - Designed a behavior-based authentication system (KinWrite)
 - Our experiment results based on over 2000 samples showed that 3D-signatures can be used to verify users

Thank you & Questions?

ntact Information

mail: <u>wyxu@zju.edu.cn</u> wyxu@cse.sc.edu

lomepage: http://www.cse.sc.edu/~wyxu